[3]Hengshan Hu., Kexie Wang, and Jingnong Wang, 2000, Simulation of acoustically induced electromagnetic field in a borehole embedded in a porous formation, Paper No.13 in the Borehole Acoustics Annual Report, Earth Resources Laboratory, Massachusetts Institute of Technology.
[4]Hengshan Hu and Jiaqi Liu.2002. Simulation of the converted electric field during acoustoelectric logging. SEG Technical Program Expanded Abstracts,2002, pp. 348-351.
[5]Hengshan Hu, Wei Guan, Kexie Wang, 2005,The electromagnetic field accompanying the acoustic head wave and the radiating electromagnetic wave during acousto-electromagnetic well logging, Proceedings of the third Biot conference on Poromechanics, Oklahoma, USA, pp593-599.
二、與學生合作的幾篇重要論文
[1] Hengshan Hu, Wei Guan, Jerry Harris,2007, Theoretical simulation of electroacoustic borehole logging in a fluid-saturated porous formation, Journal of the Acoustic Society of America, 122(1),135-145.
[2] Wei Guan, Hengshan Hu, 2008,Finite-Difference modeling of the electroseismic logging in a fluid-saturated porous formation, Journal of Computation Physics, 227(11),5633-5648.
[3] Xiao He,Hengshan Hu, 2009,Borehole Flexural Modes in Anisotropic Formations: The Low-Frequency Asymptotic Velocity, Geophysics. 74(4); E149–E158.
[5] Xiao He, Hengshan Hu, Wei Guan,2010, Fast and slow flexural waves in a deviated borehole in a homogeneous or layered anisotropic formation, Geophys. J. Int., 181, 417–426.
[6]Yongxin Gao, Hengshan Hu, 2010, Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium, Geophys. J. Int., 181, 873–896. (Because of this paper, Gao won Geophysical Journal Interntaional Student Author Award for the year 2010 )
[7]Hengshan Hu, Yongxin Gao, 2011, Electromagnetic Field Generated by a Finite Fault due to Electrokinetic Effect, Journal of Geophysical Research-Solid Earth. 116, B08302, doi: 10.1029/2010JB007958.
[8]Wei Guan, Hengshan Hu and Xiaobo Zheng, 2013, Theoretical simulation of the multipole seismoelectric logging while drilling, doi: 10.1093/gji/ggt294,Geophys. J. Int. (2013) 195, 1239–1250.
[9]Yi-de Zhang, Hengshan Hu, 2014, A technique to eliminate the azimuth ambiguity in single-well imaging, Geophysics, 79(6): D409–D416, DOI:10.1190/GEO2013-0310.1
[11]Jun Wang, Hengshan Hu,Wei Guan,Hui Li,2015, Electrokinetic experimental study on saturated rock samples: zeta potential and surface conductance, Geophys.J.Int: 201(2), 869–877.
[12]Jun Wang; Hengshan Hu; Wei Guan,2015,Experimental measurements of seismoelectric signals in borehole models, Geophysical Journal International, 203 (3): 1937-1945,
[13] Zhi Wang, Hengshan Hu, Yufeng Yang, 2015,Reciprocity relations for the elastodynamic fields generated by multipole sources in a fluid-solid configuration, Geophysical Journal International, 203, 883–892.
[14] Xiaobo Zheng, Hengshan Hu,Wei Guan, and Jun Wang, 2015,Simulation of the borehole quasistatic electric field excited by the acoustic wave during logging while drilling due to electrokinetic effect, Geophysics, 80(5): P. D417–D427
[15] Zhi Wang (王治) and Hengshan Hu., Moment tensors of a dislocation in a porous medium,Pure Appl. Geophys., 173 (2016), 2033–2045,DOI 10.1007/s00024-015-1220-9.
[16]Song Y,Hu H,Rudnicki,2016,Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model, Journal of the Mechanics and Physics of Solids, 92(July 2016),28–54.
[17]Song Y,Hu H,Rudnicki J,2016,Shear properties of heterogeneous fluid-filled porous media with spherical inclusions, International Journal of Solids and Structures, 83,154-168.
[18]Yongjia Song, Hengshan Hu, and John W. Rudnicki, Deriving Biot-Gassmann relationship by inclusion-based
method, GEOPHYSICS, VOL. 81, NO. 6 (NOVEMBER-DECEMBER 2016); P. D657–D667.
[19]Xiaobo Zheng,Hengshan Hu, A theoretical investigation of acoustic monopole LWD individual waves with
emphasis on collar wave and its dependence on formation, Geophysics, 2017,82(1)
[20]Yongjia Song, Hengshan Hu, John W. Rudnicki,2017,Dynamic stress intensity factor (Mode I) of a permeable penny-shaped crack in a fluid-saturated poroelastic solid, International Journal of Solids and Structures, 2017, 110-111: 127-136.
[21]Feilong Xu and Hengshan Hu, 2017, Inversion of the shear velocity of the cement in cased borehole through ultrasonic flexural waves,Geophysics, 82(2):D57-D68.
* Wei Guan, Peng Shi and Hengshan Hu, 2018, Contributions of poroelastic-wave potentials to seismoelectromagnetic wavefields and validity of the quasi-static calculation: a view from a borehole model. Geophys. J. Int. (2018) 212, 458–475. Advance Access publication 2017 October 9.
* Gao, Y.,(高永新), M.Wang, H. Hu, and X. Chen (2017), Seismoelectric responses to an explosive source in a fluid above a fluid-saturated porous medium, J.Geophys.Res.Solid Earth, 122,7190–7218,doi:10.1002/2016JB013703.
* Gao, Y., F. Huang, and H. Hu (2017), Comparison of full and quasi-static seismoelectric analytically based modeling, J.Geophys.Res.-Solid Earth,122,doi:10.1002/2017JB014251.
* Yufeng Yang(楊玉峰) ,Wei Guan,Hengshan Hu,Minqiang Xu,2017,Numerical study of the collar wave characteristics and the effects of grooves in acoustic logging while drilling, Geophys. J. Int.,209, 749–761.
* Yongjia Song (宋永佳); Hengshan Hu; John W.Rudnicki,2017,Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid,Acta Mechanica Sinica,33(2):356–367,DOI 10.1007/s10409-016-0633-8。
* Yongjia Song, Hengshan Hu, John W. Rudnicki,2017,Dynamic stress intensity factor (Mode I) of a permeable penny-shaped crack in a fluid-saturated poroelastic solid, International Journal of Solids and Structures, 2017, 110-111:127-136.
* Feilong Xu (許飛龍) and Hengshan Hu,2017, Inversion of the shear velocity of the cement in cased borehole through ultrasonic flexural waves,Geophysics, 82(2):D57-D68.
* Xiaobo Zheng(鄭曉波),Hengshan Hu, A theoretical investigation of acoustic monopole LWD individual waves with emphasis on collar wave and its dependence on formation, Geophysics, 2017,82(1):D1-D11.
* Yongjia Song(宋永佳), Hengshan Hu, and John W. Rudnicki, Deriving Biot-Gassmann relationship by inclusion-based method, GEOPHYSICS, VOL. 81, NO. 6 (NOVEMBER-DECEMBER 2016); P. D657–D667.
* Jun Wang(王軍), Hengshan Hu, and Wei Guan,2016, The evaluation of rock permeability with streaming current measurements ,Geophys. J. Int. (September, 2016) 206 (3): 1563-1573.
* Yongxin Gao(高永新), Jerry M. Harris, Jian Wen, Yihe Huang, Cedric Twardzik, Xiaofei Chen, and Hengshan Hu, 2016, Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake,Geophys.Res. Lett, 43 ,620–627.
* Yongjia Song(宋永佳), Hengshan Hu, John W. Rudnicki, and Yunda Duan,2016,Dynamic transverse shear modulus for a heterogeneous fluid-filled porous solid containing cylindrical inclusions, Geophys. J. Int. 206 (3): 1677-1694.
* Song Y,Hu H,Rudnicki,2016,Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model, Journal of the Mechanics and Physics of Solids, 92(July 2016),28–54.
* Song Y,Hu H,Rudnicki J,2016,Shear properties of heterogeneous fluid-filled porous media with spherical inclusions, International Journal of Solids and Structures, 83,154-168.
* Zhi Wang (王治) and Hengshan Hu.,Moment tensors of a dislocation in a porous medium,Pure Appl. Geophys., 173 (2016), 2033–2045.
特邀報告與講座
[17]隨鉆聲波測井中Scholte波與鉆鋌波 (The Scholte wave and the collar wave in acoustic logging while drilling) 第8屆全國儲層聲學與深部鉆探前沿研討會,2017年10月23-25日,北京懷柔。